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A BIRKHOFF–LEWIS-TYPE THEOREM FOR SOME
HAMILTONIAN PDES∗

DARIO BAMBUSI† AND MASSIMILIANO BERTI‡

Abstract. In this paper we give an extension of the Birkhoff–Lewis theorem to some semilinear
PDEs. Accordingly we prove existence of infinitely many periodic orbits with large period accumu-
lating at the origin. Such periodic orbits bifurcate from resonant finite dimensional invariant tori
of the fourth order normal form of the system. Besides standard nonresonance and nondegeneracy
assumptions, our main result is obtained assuming a regularizing property of the nonlinearity. We
apply our main theorem to a semilinear beam equation and to a nonlinear Schrödinger equation with
smoothing nonlinearity.
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1. Introduction. In 1933, Birkhoff and Lewis [9] (see also [16], [17]) proved their
celebrated theorem on existence of periodic orbits with large period close to elliptic
equilibria of Hamiltonian systems.1 Here we give a generalization of their result to
some semilinear Hamiltonian PDEs.

The Birkhoff–Lewis procedure consists in putting the system in fourth order
(Birkhoff) normal form, namely in the form

H = H0 + G4 + R5, H0 :=

n∑
j=1

ωj

p2
j + q2

j

2
,(1)

where G4 is a homogeneous polynomial of degree 2 in the actions Ij := (p2
j + q2

j )/2
and R5 is a remainder having a zero of fifth order at the origin. Then system (1) is a
perturbation of the integrable system H0+G4. Under a nondegeneracy condition (that
also plays a fundamental role in KAM theory) the action-to-frequency map of this
integrable system is one-to-one, and therefore there exist infinitely many resonant
tori on which the motion is periodic. The question is: Do some of these periodic
orbits persist under the perturbation due to the term R5? Birkhoff and Lewis used
the implicit function theorem and a topological argument to prove that there exists a
sequence of resonant tori accumulating at the origin with the property that at least
two periodic orbits bifurcate from each one of them.

In order to extend this result to infinite dimensional systems describing Hamilto-
nian PDEs one meets two difficulties: the first is the generalization of Birkhoff normal
form to PDEs and the second is the appearance of a small denominator problem.
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Here we work in a way which is as straightforward as possible, so, instead of
considering the standard Birkhoff normal form of the system, whose extension to PDEs
is not completely understood at present,2 we consider its “seminormal form,” namely
the kind of normal form employed to construct lower dimensional tori. Precisely,
having fixed a positive n, we split the phase variables into two groups, namely the
variables with index smaller than n and the variables with index larger than n. We
will denote by ẑ the whole set of variables with index larger than n. We construct a
canonical transformation putting the system in the form

H0 + G + Ĝ + K,(2)

where G depends only on the actions, Ĝ is at least cubic in the variables ẑ with
index larger than n, and K has a zero of sixth order at the origin. The interest of
such a seminormal form is that the normalized system H0 + G + Ĝ has the invariant
2n-dimensional manifold ẑ = 0 which is filled by n-dimensional invariant tori.

Under a nondegeneracy condition, the frequencies of the flow in such tori cover an
open subset of Rn. We concentrate on the resonant tori filled by periodic orbits, and
we prove that at least n geometrically distinct periodic orbits of each torus survive the
perturbation due to the term K. Since the orbits bifurcate from lower dimensional
tori, we have to impose a further nondegeneracy condition in order to avoid resonances
between the frequency of the periodic orbit and the frequencies of the transversal
oscillations.

The proof is based on a variational Lyapunov–Schmidt reduction similar to that
employed in [6] and inspired by [1]. It turns out that in the present case the range
equation involves small denominators. To solve the corresponding problem we use an
approach similar to that of [2]. In particular we impose a strong condition on the small
denominators and we show that, if the vector field of the nonlinearity is smoothing,
then the range equation can be solved by the contraction mapping principle. Next, the
kernel equation is solved by noting that it is the Euler–Lagrange equation of the action
functional restricted to the solutions of the range equation. The restricted functional
turns out to be defined on Tn, and so existence and multiplicity of solutions (critical
points) follows by the classical Lusternik–Schnirelmann theory.

Finally, we apply the general theorem to the nonlinear beam equation

utt + uxxxx + mu = f(u),(3)

with Dirichlet boundary conditions on a segment. We consider m as a parameter
varying in the segment [0, L], and we show that the assumptions of the abstract
theorem are fulfilled provided one excludes from the interval a finite number of values
of m. As a second application we will deal with a nonlinear Schrödinger equation
with a smoothing nonlinearity of the type considered in [20].

We recall that families of periodic solutions to Hamiltonian PDEs have been
constructed by many authors (see, e.g., [14], [21], [19], [12], [10], [2]). The main
difference is that the periodic orbits of the above quoted papers are a continuation of
the linear normal modes to the nonlinear system. In particular their period is close
to one of the periods of the linearized system. Moreover (except in the resonant case;
see [5], [7], [8]) each periodic solution involves only one of the linear oscillators.3

On the contrary, the periodic orbits constructed in the present paper are the
shadows of resonant tori; they are a purely nonlinear phenomenon, have long period,

2See, however, the recent works [3], [4].
3In the sense that all the other ones have a much smaller amplitude of oscillation.
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and moreover each periodic motion involves n linear oscillators that oscillate with
amplitudes of the same order of magnitude.

2. Main result. Consider a real Hamiltonian system with real4 Hamiltonian
function

H(z, z) =
∑
j≥1

ωjzjzj + P (z, z) ≡ H0 + P,(4)

where P has a zero of third order at the origin and the symplectic structure is given
by i

∑
j dzj∧dzj . Here z and z̄ are considered as independent variables. Often we will

write only the equation for z since the equation for z̄ is obtained by complex conjuga-
tion. The formal Hamiltonian vector field of the system is XH(z, z) := (i ∂H∂zj

,−i ∂H∂zj ),

and therefore the equations of motion have the form

żj = iωjzj + i
∂P

∂zj
, żj = −iωjzj − i

∂P

∂zj
.(5)

Define the complex Hilbert space

Ha,s(C) :=
{
w = (w1, w2, . . .) ∈ C∞

∣∣∣ ||w||2a,s :=
∑
j≥1

|wj |2j2se2ja < ∞
}
.

We fix s ≥ 0 and a ≥ 0 and will study the system in the phase space

Pa,s := Ha,s(C) ×Ha,s(C) � (z, z̄).

Fix any finite integer n ≥ 2 and denote ω := (ω1, . . . , ωn), Ω := (ωn+1, ωn+2, . . .).
We assume that

(A) The frequencies grow at least linearly at infinity; namely there exist a > 0
and d1 ≥ 1 such that

ωj ∼ ajd1 .

(NR) For any k ∈ Zn, l ∈ Z∞ with |l| ≤ 2 and 0 < |k| + |l| ≤ 5, one has

ω · k + Ω · l 
= 0.(6)

(S) There exist a neighborhood of the origin U ⊂ Pa,s and d ≥ 0 such that
XP ∈ Cω(U ,Pa,s+d); namely it is analytic.

Remark 2.1. In applications to PDEs, property (S) is usually a consequence of the
smoothness of the Nemitsky operator defined by the nonlinear part of the equation.
In order to ensure (S) one has usually to restrict to the case where the functions with
Fourier coefficients in Pa,s form an algebra (with the product of convolution between
sequences). This imposes some limitations on the choice of the indexes a, s.

Proposition 2.1. Assume (A), (NR), (S). There exists a real analytic, sym-
plectic change of variables T defined in some neighborhood U ′ ⊂ Pa,s of the origin,
transforming the Hamiltonian H in seminormal form up to order six, namely into

H ◦ T ≡ H = H0 + G + Ĝ + K(7)

4i.e., if z is actually the complex conjugate to z, then the Hamiltonian H takes real values.
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with

G =
1

2

∑
min(i,j)≤n

Gij |zi|2|zj |2,

Gij = Gji, Ĝ = O(||ẑ||3a,s), where ẑ := (zn+1, zn+2, . . .) and K = O(||z||6a,s). More-
over

XG, XĜ, XK ∈ Cω(U ′,Pa,s+d), ‖z − T (z)‖a,s+d ≤ C‖z‖2
a,s.(8)

We defer the proof of this proposition to the appendix where we also give a formula
for Ḡ (see (69)).

The interest of such a seminormal form is that the system obtained by neglecting
the reminder K has the invariant manifold ẑ = 0 on which the system is integrable.

As a variant with respect to the standard finite dimensional procedure we have
left the third order term Ĝ but normalized the system up to order six (instead of five).
This is needed in Lemma 3.2.

We also remark that, assuming just the nonresonance condition (NR), one can
not hope (in general) to transform the Hamiltonian H into the infinite dimensional
analogue of the standard Birkhoff normal form.

We rewrite the Hamiltonian H in the form

H := ω · I + Ω · Z +
1

2
AI · I + (BI,Z) + Ĝ + K,(9)

where I := (|z1|2, . . . , |zn|2), Z := (|zn+1|2, |zn+2|2, . . .) are the actions, A is the n×n
matrix

A = (Gij)1≤i,j≤n,(10)

and B is the ∞× n matrix

B = (Gij)1≤j≤n<i.(11)

Remark 2.2. Due to (8), (9), one has |(BI)j | ≤ C|I|j−d for a suitable C. Indeed,
since XG maps Pa,s to Pa,s+d, the operator zj �→ (BI)jzj maps Pa,s to Pa,s+d, and
therefore its eigenvalues (BI)j must fulfill the above property.

Introduce action angle variables for the first n modes by zj = |zj |eiφj =
√
Ije

iφj

for j = 1, . . . , n.
Perform the rescaling Ij → η2Ij , φj → φj for j = 1, . . . , n, zj → ηzj , zj → ηzj

for j ≥ n + 1 and divide the Hamiltonian by η2. We get

H(I, φ, ẑ, ẑ) = ω · I + Ω · Z + ηĜη + η2
(1

2
AI · I + (BI,Z)

)
+ η4Kη,(12)

where Ĝη = O(||ẑ||3a,s) and Kη(z) = O(||z||6a,s). We will still denote by Pa,s ≡ Rn×
Tn× Ha,s× Ha,s the phase space.

We will find periodic solutions of the Hamiltonian system (12) close to periodic
solutions of the integrable Hamiltonian system

İ = 0, φ̇ = ω + η2(AI + BTZ), żj = i
(
Ωj + η2(BI)j

)
zj , j ≥ n + 1(13)
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in which Ĝη and Kη are neglected. The manifold {ẑ = 0} is invariant for the Hamil-
tonian system (13) and is completely filled up by the invariant tori

T (I0) := {I = I0, φ ∈ Tn, ẑ = 0}

on which the motion is linear with frequencies

ω̃ ≡ ω̃(I0) := ω + η2AI0.

Such a torus is linearly stable, and the frequencies of small oscillation about the torus
T (I0) are the “shifted elliptic frequencies,” namely

Ω̃j(I0) := (Ω + η2BI0)j .(14)

If all the ω̃’s are integer multiples of a single frequency, namely if

ω̃ := ω + η2AI0 =
1

T
2πk ∈ 1

T
2πZn,(15)

then T (I0) is a completely resonant torus, supporting the family of T -periodic motions

P :=
{
I(t) = I0, φ(t) = φ0 + ω̃t, ẑ(t) = 0

}
.(16)

The whole family P will not persist in the dynamics of the complete Hamiltonian
system (12). We will show that, under suitable assumptions, at least n geometrically
distinct T -periodic solutions persist. More precisely, we will show that this happens
for η small enough and for any choice of I0 and T with

‖I0‖ ≤ C,
1

η2
≤ T ≤ 2

η2
,(17)

where C is independent of η, fulfilling the following.
(H1) Equation (15) holds.
(H2) There exist δ > 0 and τ < d such that

|Ω̃jT − 2πl| ≥ δ

jτ
∀l ∈ Z, ∀j ≥ n + 1.(18)

Proposition 2.2. Fix τ > 1. Assume (A), detA 
= 0, and

Ω̂j :=
(
Ω −BA−1ω

)
j

= 0 ∀j ≥ n + 1;(19)

then, for any η > 0 and almost any T fulfilling (17) there exists I0 such that (H1,H2)
hold.

Proof. Fix η; we define I0 := I0(T ) as a function of T so that (15) is identically
satisfied. Then we find T so that the nonresonance property (18) holds. Fix η and
define

I0 := I0(T ) :=
2π

η2T
A−1

([ωT
2π

]
− ωT

2π

)
,(20)

k := k(T ) =
[ωT

2π

]
,(21)

where [(x1, . . . , xn)] := ([x1], . . . , [xn]) and [x] ∈ Z denotes the integer part of x ∈ R.
With the choice (20), (21), ωT + Tη2AI0 = 2πk, and I0 is of order 1 since Tη2 ≥ 1.
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We come to the nonresonance property (18). To study it, we remark that the
function T → [ωT/2π] is piecewise constant. Hence, for any T0 ∈ (η−2, 2η−2) there
exists an interval I0 = (T0 − a, T0 + b) ⊂ [η−2, 2η−2] such that [ωT/2π] := k0 is
constant for T ∈ I0. Moreover the union of such intervals covers the whole set of
values in which we are interested. We will construct a subset of full measure of I0, in
which condition (H2) is fulfilled.

So, for fixed j, l consider the set

Bjl(τ, δ) :=

{
T ∈ I0 : |Ω̃jT − 2πl| < δ

jτ

}
.(22)

Remark that

Ω̃jT = Ω̂jT +

(
2πBA−1

[
ωT

2π

])
j

,

so that, in I0

d

dT

(
Ω̃jT − 2πl

)
= Ω̂j .

By (A) and Remark 2.2, there exists C such that∣∣∣Ω̃j

∣∣∣ ≥ Cjd1 ,
∣∣∣Ω̂j

∣∣∣ ≥ Cjd1 .(23)

Then Bjl is an interval with length |Bjl| controlled by

|Bjl| < 2
δ

Cjτ+d1
.(24)

Fix j and estimate the number of l for which the set Bjl is (possibly) nonempty. First

remark that, due to (A), one has that, as T varies in I0, the quantity Ω̃jT varies in a
segment of length smaller than Cjd1 , with a suitable C. This means that there are at
most Cjd1 values of l which fall in such an interval (with redefined C). So, one has∣∣∣∣∣

⋃
l

Bjl

∣∣∣∣∣ ≤ Cδ

jτ
.(25)

Thus, provided τ > 1 as we assumed, one has that∣∣∣∣∣∣
⋃
jl

Bjl

∣∣∣∣∣∣ ≤ Cδ.(26)

By this estimate, the intersection over δ of such sets has zero measure, which is the
thesis.

Theorem 2.3. Consider the system (9); let T and I0 fulfill (17) and (H1), (H2).
Then, provided η is small enough, there exist n geometrically distinct periodic orbits
of the Hamiltonian system H (cf. (9)) with period T which are η2 close in Pa,s to the
torus T (I0).

Going back to the original system, one has the following corollary.
Corollary 2.4. Consider the Hamiltonian system (5) and fix a positive n. As-

sume that (A), (NR), (S) hold, that detA 
= 0 (cf. (10)), and that Ω̂j 
= 0 for all j ≥
n + 1 (cf. (19)). Finally assume d > 1.

Then, for any positive η � 1 there exist at least n distinct periodic orbits z(1)(t), . . . ,
z(n)(t) with the following properties:
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• ‖z(l)(t)‖a,s ≤ Cη for l = 1, . . . , n and t ∈ R;
• ‖Π>nz

(l)(t)‖a,s ≤ Cη2 for l = 1, . . . , n and t ∈ R; here Π>n is the projector
on the modes with index larger than n;

• the period T of z(l) does not depend on l and fulfills η−2 ≤ T ≤ 2η−2.
Remark 2.3. By Theorem 2.3 the results of Corollary 2.4 remain true even if

the Hamiltonian system (5) does not fulfill one of the assumptions (A), (NR) but
nevertheless one is able to transform it to the form (7).

Remark 2.4. If the integer numbers (k1, . . . , kn) = ω̃T/2π are relatively prime,
then T is the minimal period of the periodic solutions z(l). Indeed z(l) are T -periodic
functions close to the functions defined in (16) which have minimal period T .

3. Proof of Theorem 2.3. Since the problem is Hamiltonian, any periodic
solution of the system is a critical point of the action functional

S(I, φ, ẑ, ẑ) =

∫ T

0

⎛
⎝I · φ̇ + i

∑
j≥n+1

zj żj −H(I, φ, ẑ, ẑ)

⎞
⎠ dt(27)

in the space of T -periodic, Pa,s-valued functions. Here H is given by (12).
We look for a periodic solution ζ := (φ, I, ẑ, ẑ) of the form

φ(t) = φ0 + ω̃t + ψ(t), I(t) = I0 + J(t),(28)

where (ψ, J, ẑ, ẑ) are periodic functions of period T taking values in the covering space
Rn×Rn×Ha,s×Ha,s of Pa,s (that for simplicity will still be denoted by Pa,s). Hence
(ψ, J , ẑ) must satisfy (in what follows for simplicity of notation we will only consider
the equation for ẑ)

∇φS(ζ) = 0 ⇐⇒ J̇ = Rφ(ζ),(29)

∇IS(ζ) = 0 ⇐⇒ ψ̇ − η2AJ = RI(ζ),(30)

∇zj
S(ζ) = 0 ⇐⇒ żj − iΩ̃jzj = (Rz)j(ζ),(31)

where⎧⎨
⎩

Rφ(ζ) := −η4∂φKη(I0 + J, φ0 + ω̃t + ψ, ẑ) − η∂φĜη,

RI(ζ) := η2BTZ + η4∂IKη(I0 + J, φ0 + ω̃t + ψ, ẑ) + η∂IĜη,

(Rz)j(ζ) = iη2(BJ)jzj + iη∂zj
Ĝη + iη4∂zj

Kη(I0 + J, φ0 + ω̃t + ψ, ẑ).

(32)

Remark that, since one expects J, ψ, and ẑ to be small (they will turn out to be of
order η2), and by Proposition 2.1 one has ∂zĜη(ζ) = O(‖ẑ‖2

a,s), ∂φĜη(ζ) = O(‖ẑ‖3
a,s),

∂IĜη(ζ) = O(‖ẑ‖3
a,s) the r.h.s. of (29), (30), (31) remain small even when they are

multiplied by T = O(η−2) (see Lemma 3.2).
Define the Hilbert space H1

P ((0, T );Pa,s) of the T -periodic Pa,s-valued periodic
functions of class H1. In order to simplify notations we will denote this space by
H1

P,s.

Denote for ζ = (ψ, J, w) ∈ H1
P,s,

|J |2L2,T :=
1

T

∫ T

0

|J |2 dt, |ψ|2L2,T :=
1

T

∫ T

0

|ψ|2 dt,(33)

||w||2L2,T,a,s :=
1

T

∫ T

0

||w(t)||2a,s dt,(34)

‖ζ‖L2,T,a,s := |J |L2,T + |ψ|L2,T + ||w||L2,T,a,s.(35)
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We will endow H1
P ((0, T );Pa,s) ≡ H1

P,s with the norm

‖ζ‖T,a,s := ‖ζ‖L2,T,a,s + T‖ζ̇‖L2,T,a,s.(36)

Remark 3.1. With this choice one has

‖ζ(t)‖Pa,s
≤ C‖ζ‖T,a,s ∀t ∈ R

with a constant independent of T . Therefore, with this choice of the norm, the space
H1

P,s is a “Banach algebra,” and the T, a, s norm of the product of any component of
a vector ζ with any component of a vector ζ ′ is bounded by C‖ζ‖T,a,s‖ζ ′‖T,a,s with a
constant C independent of T .

We will consider the system (29), (30), (31) as a functional equation in H1
P,s.

Remark 3.2. As a consequence of (8) and Remark 3.1, the map ζ �→ R(ζ) :=
(Rφ(ζ), RI(ζ), Rz(ζ)) is a C∞ map from H1

P,s to H1
P,s+d.

We are going to use the method of Lyapunov–Schmidt decomposition in order to
solve (29), (30), (31). To this end remark that the kernel of the linear operator L at
the l.h.s. of (29), (30), (31) is given by (φ, 0, 0) with constant φ ∈ Tn. The range of
L is the space of the functions ζ = (ψ, J, ẑ) with ψ(t) having zero mean value. So,
there is a natural decomposition of H1

P,s into Range+Kernel. Explicitly, we write

ζ = (φ + ψ, J, ẑ) = (ψ, J, ẑ) + (φ, 0, 0) ≡ ζR + φ

with ψ having zero mean value and φ being constant. Then we fix φ, take the pro-
jection of the system (29), (30), (31) on the range, and solve it. The solution is a
function ζR(η, φ). Finally, we insert this function in the variational principle in order
to find critical points of S.

3.1. The range equation. The range equation has the form⎧⎨
⎩

J̇ = Rφ(ζ) − 〈Rφ(ζ)〉,
ψ̇ − η2AJ = RI(ζ),

żj − iΩ̃jzj = (Rz)j(ζ),

(37)

where 〈Rφ(ζ)〉 := (1/T )
∫ T

0
Rφ(ζ)dt. We look for its solution in the range, namely in

the space

H
1

P,s ⊂ H1
P,s

of the functions ζR ≡ (ψ, J, ẑ) with ψ having zero average.
First of all we analyze the linear problem defined by the l.h.s. of (37). A “small

denominator problem” appears since inverting this linear system the denominators
Ω̃jT − 2πl, j ≥ n + 1, l ∈ Z are present. So, define the linear operator

L(ψ, J, ẑ) ≡ LζR := (J̇ , ψ̇ − η2AJ, ẇj − iΩ̃jwj)

and study

LζR = (ψ̃, J̃ , w̃)(38)

with (ψ̃, J̃ , w̃) ∈ H
1

P,s+τ given.
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Lemma 3.1. Assume (H2). If

ζ̃R ≡ (ψ̃, J̃ , w̃) ∈ H
1

P,s+τ , i.e., in H1
P,s+τ with

∫ T

0

ψ̃(t) dt = 0,

then (38) has a unique solution,

ζR ≡ (ψ, J, w) ∈ H
1

P,s.

Moreover for T ∈ (η−2, 2η−2) and a constant C := C(δ)

‖ζR‖T,a,s ≤
C

η2
‖ζ̃R‖T,a,s+τ .

Proof. Since A is symmetric and invertible it has an orthonormal basis of eigenvec-
tors e1, . . . , en with eigenvalues λ1, . . . , λn. In these coordinates J(t) =

∑n
k=1 Jk(t)ek,

ψ(t) =
∑n

k=1 ψk(t)ek, and the solution ζR of (38) with ψ0 = 0 has Fourier coefficients

Jkl =
T ψ̃kl

i2πl
for l 
= 0, Jk0 = − J̃k0

η2λk
,

ψkl = T
J̃kl + η2Jklλk

i2πl
for l 
= 0,

and, for j ≥ n + 1,

wjl :=
Tw̃jl

i(2πl − Ω̃jT )
.

We then find

|J |2L2,T =
∑
kl

J2
kl =

∑
k

( J̃k0

η2λk

)2

+
∑
k,l �=0

(T ψ̃kl

i2πl

)2

≤ C

η4
|J̃ |2L2,T + CT 2|ψ̃|2L2,T .(39)

A similar estimate for |ψ|L2,T holds. Moreover

|ψ̇|L2,T ≤ η2|J |L2,T + |ψ̃|L2,T ≤ C(|J̃ |L2,T + |ψ̃|L2,T ),(40)

using (39). Finally, the solution w = (wj)j≥n+1 of (38) is

wj(t) =
∑
l∈Z

Tw̃jl

i(2πl − Ω̃jT )
ei(2π/T )lt,

where w̃j(t) =
∑

l∈Z w̃jle
i(2π/T )lt. From (H2) we get

||w||L2,T,a,s ≤ C
T

δ
||w̃||L2,T,a,s+τ , ||ẇ||L2,T,a,s ≤ C

T

δ
|| ˙̃w||L2,T,a,s+τ .(41)

By (39), (40), and (41) the last estimate of the lemma follows.
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Thus L−1 defines a linear bounded operator L : H
1

P,s+τ → H
1

P,s.
In order to find a solution ζR = (ψ, J, ẑ) of the range equation it is sufficient to

find a fixed point of

ζR = Φ(ζR) := L
(
N(ζR;φ)

)
(42)

in the space H
1

P,s, where N := N(ζR;φ) denotes the r.h.s. of (37).
Lemma 3.2. Assume d > τ . Then there exists a constant C sufficiently large

such that ∀η � 1 the map Φ is a contraction of a ball of radius Cη2.

Proof. Consider a ζR ∈ H
1

P,s with ‖ζR‖T,a,s ≤ ρ with some positive (small) ρ.
Since H1

P,s is an algebra with constants independent of T (cf. Remark 3.1), one has,
by (32),

‖N(ζR)‖T,a,s+d ≤ C(η4 + ηρ2)

with a suitable C. Therefore, by Lemma 3.1 one has

‖Φ(ζR)‖T,a,s ≤ ‖Φ(ζR)‖T,a,s+d−τ ≤ C

(
η2 +

ρ2

η

)
,

which is smaller than ρ, provided C(η2+ρ2/η) < ρ, which is implied, e.g., by ρ = 2Cη2

and η small enough.
Similarly one estimates the Lipschitz constant of Φ by the norm of its differential.

Such a differential is bounded in a ball of radius ρ by C(η2 + ρ/η), from which the
thesis follows.

Corollary 3.3. There exists a unique smooth function Tn � φ �→ ζR(φ, η) ∈
H

1

P,s solving (37) and fulfilling

‖ζR(φ, η)‖T,a,s ≤ Cη2.

3.2. The kernel equation. The geometric interpretation of the construction
of the previous subsection is that we have found a submanifold T n ≡ {ζφ0

:= (φ0 +
ω̃t, I0, 0)+ ζR(φ0, η), φ0 ∈ Tn} ⊂ H1

P,s, diffeomorphic to an n-dimensional torus, on
which the partial derivatives of the action functional S with respect to the variables
ζR vanish. We claim that at a critical point of S restricted to T n, all the partial
derivatives of the complete functional S vanish and therefore that such a point is
critical also for the nonrestricted functional.

Indeed, let Sn : Tn → R be the functional defined by Sn(φ0) := S(ζφ0) ∀φ0 ∈ Tn.
Lemma 3.4. If φ0 ∈ Tn is a critical point of Sn : Tn → R, then ζφ0 is a critical

point of the nonrestricted functional S.

Proof. Since ζR(φ0, η) = (ψφ0
, Jφ0

, ẑφ0
) ∈ H

1

P,s solves (37), then ζφ0
satisfies

∀φ0 ∈ Tn,

∇φS(ζφ0) = 〈Rφ(ζφ0)〉, ∇IS(ζφ0) = 0, ∇zj
S(ζφ0) = 0(43)

(∇S denote the L2-gradients). By (43) and since
∫ T

0
∂φ0ψφ0(t) dt = 0 ∀φ0 ∈ Tn,

∂φ0Sn(φ0) := (∇φS(ζφ0), ∂φ0ζφ0)L2 = T 〈Rφ(ζφ0)〉.

Therefore, if φ0 ∈ Tn is a critical point of Sn, then 〈Rφ(ζφ0)〉 = 0, and at ζφ0 ∈ T n

all the partial derivatives of the complete functional S vanish.
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By standard Lusternik–Schnirelmann theory there exist at least n geometrically
distinct T -periodic solutions, i.e., solutions not obtained from each other simply by
time-translations. Indeed, restrict Sn to the plane E := [ω̃]⊥ orthogonal to the
periodic flow ω̃ = (1/T )2πk with k ∈ Zn. The set Zn ∩E is a lattice of E, and hence
Sn defines a functional Sn|Γ on the quotient space Γ := E/(Zn ∩ E) ∼ Tn−1.

Due to the invariance of Sn with respect to the time shift, a critical point of Sn|Γ
is also a critical point of Sn : Tn → R. By the Lusternik–Schnirelmann category
theory since catΓ = catTn−1 = n, we can define the n min-max critical values c1 ≤
c2 ≤ · · · ≤ cn for Sn|Γ. If the critical levels ci are all distinct, the corresponding
T -periodic solutions are geometrically distinct, since their actions ci are all different.
On the other hand, if some min-max critical level ci coincides, then, by the Lusternik–
Schnirelmann theory, Sn|Γ possesses infinitely many critical points. However not all
the corresponding T -periodic solutions are necessarily geometrically distinct, since two
different critical points could belong to the same orbit. Nevertheless, since a periodic
solution can cross Γ at most a finite number of times, the existence of infinitely many
geometrically distinct orbits follows. For further details, see [6].

This concludes the proof of Theorem 2.3.

4. Applications.

4.1. The nonlinear beam equation. Consider the beam equation

utt + uxxxx + mu = f(u)(44)

subject to hinged boundary conditions

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,(45)

where the nonlinearity f(u) is a real analytic odd function of the form

f(u) = au3 +
∑
k≥5

fku
k, a 
= 0.

The beam equation (44) is a Hamiltonian PDE with associated Hamiltonian

H =

∫ π

0

u2
t

2
+

u2
xx

2
+

mu2

2
− g(u) dx,

where g(u) :=
∫ u

0
f(s) ds is a primitive of f .

Write the system in first order form{
u̇ = v,
v̇ = −uxxxx −mu + f(u).

(46)

The standard phase space5 for (46) is Fs := Hs
C × Hs−2

C � (u, v), where Hs
C is the

space of the functions which extend to skew symmetric Hs periodic functions over
[−π, π]. Note that Hs

C = {u(x) =
∑

j≥1 uj sin(jx) |
∑

j≥1 |uj |2j2s < +∞}. It is then
immediate to realize that, due to the regularity and skew symmetry of the vector field
of the nonlinear part, f defines a smoothing operator, namely a smooth map from Fs

to Fs+2, provided s ≥ 1.

5An equivalent definition makes use of the so-called compatibility conditions required for the
smoothness of solutions of second order equations with Dirichlet boundary conditions; see, e.g., [11,
Theorem X.8].
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Here we are also interested in spaces of analytic functions, namely functions whose
Fourier coefficients belong to Ha,s with some positive a. It is easy to see that the
smoothing property of the nonlinearity holds also for these spaces.

Introduce coordinates q = (q1, q2, . . .), p = (p1, p2, . . .) through the relations

u(x) =
∑
j≥1

qj√
ωj

φj(x), v(x) =
∑
j≥1

pj
√
ωjφj(x),

where φj(x) =
√

2/π sin(jx) and

ω2
j = j4 + m.(47)

Remark also that

ωj ∼ j2.

Passing to complex coordinates

zj :=
qj + ipj√

2
, zj :=

qj − ipj√
2

,

the Hamiltonian takes the form (4), and the nonlinearity fulfills (S) with s ≥ 1 a
suitable a, depending on the anayticity strip of f , and d = 2 (for more details, see
[19], [13]).

In order to verify the nonresonance property we use m as a parameter belonging
to the set [0, L] with an arbitrary L.

Lemma 4.1. There exists a finite set Δ ⊂ [0, L] such that, if m ∈ [0, L]\Δ, then
condition (NR) holds.

Proof. First remark that, due to the growth property of the frequencies, there is
at most a finite number of vectors l ∈ Z2 at which ω ·k+Ω · l is small. It follows that,
having fixed an arbitrary constant C, there is at most a finite set of k’s and l’s over
which |ω · k + Ω · l| < C. Denote by S such a set.

For (k, l) ∈ S consider

fkl(m) = ω(m) · k + Ω(m) · l;

since fkl is an analytic function, it has only isolated zeros. So at most finitely many
of them fall in [0, L]. The set Δ is the union over k, l ∈ S of such points. Fix
m ∈ [0, L]\Δ.

Then one can put the system in seminormal form. The explicit computation was
essentially done in [15] (see also [19], [13]), obtaining that the matrices A and B are
given by

A =
6

π

⎛
⎜⎜⎝

3
ω2

1

4
ω1ω2

. . . 4
ω1ωn

4
ω2ω1

3
ω2

2
. . . 4

ω2ωn

. . . . . . . . . . . .
4

ω1ωn

4
ωnω2

. . . 3
ω2

n

⎞
⎟⎟⎠ , B =

6

π

⎛
⎜⎝

4
ωn+1ω1

. . . 4
ωn+1ωn

4
ωn+2ω1

. . . 4
ωn+2ωn

...
...

...

⎞
⎟⎠ .

(48)
Remark that, defining the matrices

S1 := diag(ω1, . . . , ωn) and S2 := diag(ωn+1, ωn+2, . . .),



BIRKHOFF–LEWIS THEOREM FOR PDEs 95

one can write A = 6
πS

−1
1 ÃS−1

1 , B = 6
πS

−1
2 B̃S−1

1 with

Ã =

⎛
⎜⎝

3 4 . . . 4
4 3 . . . 4
. . . . . . . . . . . .
4 4 . . . 3

⎞
⎟⎠ , B̃ =

⎛
⎝ 4 . . . 4

4 . . . 4
...

...
...

⎞
⎠ .(49)

With these expressions at hand it is immediate to verify that det A 
= 0. For what
pertains Ω̂j (cf. (19)) by exactly the same argument in the proof of Lemma 4.1 one has
that they are different from zero except for at most finitely many values of m ∈ [0, L].

Thus, provided m does not belong to a finite subset of [0, L], Theorem 2.4 and its
Corollary 2.4 apply.

4.2. A nonlinear Schrödinger equation. Consider the space Hs
C as in the

previous section. Following Pöschel [20] we define a smoothing operator as follows.
Fix a sequence {ρj}j≥1 with the property

∀j ≥ 1, ρj 
= 0 and |ρj | ≤ Cj−d/2, d > 1.(50)

Consider the even, 2π-periodic, real function ρ(x) :=
∑

j ρj cos(jx) and define

Γ : Hs
C → H

s+d/2
C , Γu := ρ ∗ u,(51)

where the star denotes convolution (it is defined first by extending the function u to
an odd 2π-periodic function).

Remark 4.1. It is easy to see that, expanding u in Fourier series

u(x) =
∑
j≥1

zj

√
2

π
sin(jx),

the jth Fourier coefficient of Γu is proportional to ρjzj .
Consider the Hamiltonian system with Hamiltonian function

H(u, u) =

∫ π

0

|ux|2 + F
(
|Γu|2

)
dx(52)

with F an analytic function having a zero of order 2 at the origin, i.e., F ′′(0) 
= 0.
The equations of motion are

−iut = uxx + Γ
(
F ′

(
|Γu|2

)
Γu

)
.(53)

Inserting the Fourier expansion of u, the Hamiltonian H takes the form (4),

H(z, z) =
∑
j≥1

ωjzjzj + P4(z, z) + higher order terms of degree at least 6,

with ωj = j2,

P4 = a
∑

i1,i2,i3,i4∈N

Fi1i2i3i4zi1zi2zi3zi4 , a 
= 0,(54)

Fi1i2i3i4 = ρi1ρi2ρi3ρi4

∫ π

0

sin(i1x) sin(i2x) sin(i3x) sin(i4x)dx.(55)
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Then the Hamiltonian vector field fulfills (S) with d given by (50).
It results in Fi1i2i3i4 = 0 unless i1 ± i2 ± i3 ± i4 = 0 for some choice of the signs.

Thus only a codimension 1 set of coefficients Fi1i2i3i4 is actually different from zero,
and the sum in (54) extends only over i1 ± i2 ± i3 ± i4 = 0.

The nonresonance assumption (NR) is here violated. So one could expect the
seminormal form (9) of Proposition 2.1 not to hold for this system. Indeed one could
only expect to transform H into a “resonant normal form.” Nevertheless, it turns out
that such resonant normal form depends on the actions only, and so the Hamiltonian
H can still be written in the form (9). Actually, even a stronger result holds (as in
[15]): the Hamiltonian H can be brought into the infinite dimensional analogue of the
classical Birkhoff normal form. More precisely, we have the following proposition.

Proposition 4.2. There exists a real analytic, symplectic change of variables T
defined in some neighborhood U ′ ⊂ Pa,s of the origin, transforming the Hamiltonian
H into

H ◦ T ≡ H = H0 + G + K(56)

with

G =
1

2

∑
i,j≥1

Gij |zi|2|zj |2, Gij = αρ2
i ρ

2
j (4 − δij), α 
= 0,(57)

and K = O(||z||6a,s). Moreover

XG, XĜ, XK ∈ Cω(U ′,Pa,s+d), ‖z − T (z)‖a,s+d ≤ C‖z‖2
a,s.(58)

The proof follows section 3 of [15] and, for the reader’s convenience, we reproduce
it at the end of the appendix. The key ingredient is that the relevant divisors in
the normalizing transformation are uniformly bounded away from 0 since they are
nonvanishing integers.

Clearly the Birkhoff normal form Hamiltonian H given in (56) can be written
also in the seminormal form (9). By (57), also in this case the matrices A and B

(cf. (10)–(11)) have the structure A = αS1ÃS1 , B = 2αS2B̃S1 with matrices Ã and

B̃ still given by (49), S1 := diag(ρ2
1, . . . , ρ

2
n) and S2 := diag(ρ2

n+1, ρ
2
n+2, . . .). So the

determinant of A is still different from zero. The frequencies Ω̂j (cf. (19)) now have
the structure

Ω̂j(ρ) = j2 − ρ2
ja(ρ) ∀j ≥ n + 1,

where a is a function of ρ2
1, . . . , ρ

2
n. So, except for exceptional choices of {ρj}j≥n+1,

the nondegeneracy conditions are fulfilled, Theorem 2.3 applies to the Hamiltonian
system generated by H in (56), and (see Remark 2.3) Corollary 2.4 applies to (53).

5. Appendix: Proof of the normal form propositions.
Proof of Proposition. 2.1. The idea is to proceed as in the proof of the stan-

dard Birkhoff normal form theorem, i.e., by successive elimination of the nonresonant
monomials. As a variant with respect to the standard procedure one does not elim-
inate terms which are at least cubic in the variables ẑ. Remark that the estimates
involved in the proofs are much more complicated than in the finite dimensional case.

To start with, expand P in a Taylor series up to order five: P = P3 + P4 +
P5+higher order terms. Then we begin by looking for the transformation simplifying
P3. So write

P3 = P 1
3 + Ĝ3(z)
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with

Ĝ3(z) = O(‖ẑ‖3),

and P 1
3 is composed by the first three terms of the Taylor expansion of P3 in the

variables ẑ only (so it contains only terms of degree 0, 1, and 2 in such variables). We
use the Lie transform to eliminate from P 1

3 all the nonresonant terms; i.e., we make a
canonical transformation which is the time 1 flow Φ1 of an auxiliary Hamiltonian sys-
tem with a Hamiltonian function χ of degree 3. By considering the Taylor expansion
of Φ1 at zero, one has

H ◦ Φ1 = H0 + P 1
3 + {χ,H0} + O(‖z‖4) + O(‖ẑ‖3).(59)

One wants to determine χ so that

G3 := P 1
3 + {χ,H0}

is a function of the actions |zj |2 only. Since G3 has to be a function of the actions only
and moreover it is a polynomial of degree 3, it must vanish. To this end we proceed
as usual in the theory of Birkhoff normal form.

Denote by x = (x1, . . . , xn) ≡ (z1, . . . , zn) the first n variables and take χ to be a
homogeneous polynomial of degree 3. Write

χ =
∑

|j1|+|j2|+|j3|+|j4|=3

χj1j2j3j4x
j1xj2 ẑj3 ẑ

j4
(60)

with multi-indexes j1, j2, j3, j4. For a multi-index jl ≡ (jl,1, . . . , jl,n) we used the

notation |jl| := |jl,1| + · · · + |jl,n| and xjl := x
jl,1
1 , . . . , x

jl,n
n , and similarly for a multi-

index with infinitely many components. So, one has

{χ,H0} =
∑

|j1|+|j2|+|j3|+|j4|=3

i (ω · (j1 − j2) + Ω · (j3 − j4))χj1j2j3j4x
j1xj2 ẑj3 ẑ

j4
.

Write now

P 1
3 =

∑
|j1|+|j2|+|j3|+|j4|=3

Pj1j2j3j4x
j1xj2 ẑj3 ẑ

j4
(61)

and remark that the indexes are here subjected to the further limitation |j3|+|j4| ≤ 2.
So, in order to have G3 := P 1

3 + {χ,H0} = 0, one is led to the choice

χj1j2j3j4 :=
−Pj1j2j3j4

i (ω · (j1 − j2) + Ω · (j3 − j4))
, j1 − j2 + j3 − j4 
= 0,(62)

and zero otherwise.
Since |j1| + |j2| + |j3| + |j4| = 3, then 0 < |j1 − j2|+ |j3 − j4| ≤ 5 and so, due to

assumption (NR) (recall also |j3| + |j4| ≤ 2), the denominators appearing in (62) are
all different from zero. Moreover, due to the growth of the frequencies ωj (assumption
(A)), they are actually bounded away from zero. Then in order to conclude the proof
(at least for what concerns the elimination of the third order part) one has to ensure
that the function χ is well defined and that it has a smooth Hamiltonian vector field.
The terms of χ of different degree in ẑ have to be treated in a different way, so we will
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denote by χ0, χ1, χ2 the homogeneous parts of degree 0, 1, and 2, respectively, with
respect to the variables ẑ.

We need a few lemmas.
Lemma 5.1. Let Rn � x �→ f(x) ∈ �2 be a homogeneous bounded polynomial of

degree r. Write

f(x) =
∑

j∈Nn,|j|=r

∑
k≥1

fjkx
jek,

where ek is the standard basis of �2. Let {ρj,k}k≥1
j∈Nn be a sequence with the property

|ρjk| ≥ C, and define a function g by

g(x) =
∑

j∈Nn,|j|=r

∑
k≥1

fjk
ρjk

xjek.(63)

Then there exists C such that ‖g(x)‖ ≤ C‖x‖r.
Proof. Write g(x) =

∑
j gjx

j and remark that the cardinality of the set over
which the sum is carried out is finite. We estimate each of the vectors gj ’s. Therefore,
one has

‖gj‖2 =
∑
k

(
fkj
ρkj

)2

≤ 1

C2

∑
k

f2
kj =

1

C2
0

‖fj‖2.

Now the norms of the vectors fj are bounded, and therefore the thesis follows.
Remark 5.1. By the same proof, the same result holds if the space �2 is substituted

by the spaces Ha,s.
Lemma 5.2. Let Rn × �2 � (x, z) �→ f(x, z) ∈ R be a homogeneous bounded

polynomial of degree r in x, linear and bounded in z. Write

f(x, z) =
∑
k≥1

j∈Nn,|j|=r

fjkx
jzk.

Let{ρj,k}k≥1
j∈Nn be as above, and define a function g by

g(x, z) =
∑
k≥1

j∈Nn,|j|=r

fjk
ρjk

xjzk.(64)

Then there exists C such that |g(x, z)| ≤ C‖x‖r‖z‖.
Proof. Just write g(x, z) =

∑
j gj(z)x

j . Fix j and study the linear functional
gj(z); one has

|gj(z)| =

∣∣∣∣∣∣
∑
k≥1

fjk
zk
ρjk

∣∣∣∣∣∣ ≤ ‖fj‖
∥∥∥∥zρ

∥∥∥∥ ,
where fj is defined in analogy to gj , its norm is the norm as a linear functional, and
z/ρ is the vector of �2 with kth component equal to zk/ρjk. From this inequality,
summing over j, the thesis follows.

In order to estimate the vector field of χ2 we will need the following lemma.
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Lemma 5.3. [Lemma A. 1 of [18]]. If A = (Akl) is a bounded linear operator on
�2, then also B = (Bkl) with

Bkl :=
|Akl|

1 + |k − l|(65)

is a bounded linear operator on �2.
For the proof we refer to [18].
Lemma 5.4. Let Rn × �2 � (x, z) �→ f(x, z) ∈ �2 be a homogeneous bounded

polynomial of degree r in x linear and bounded in z. Write

f(x, z) =
∑
k,l≥1

j∈Nn,|j|=r

fjklx
jzkel.

Let {ρj,k,l}k,l≥1
j∈Nn be a sequence fulfilling,

|ρjkl| ≥ C1(1 + |k − l|)(66)

and define a function g by

g(x, z) =
∑
k,l≥1

j∈Nn,|j|=r

fjkl
ρjkl

xjzk.(67)

Then there exists C such that ‖g(x, z)‖ ≤ C‖x‖r‖z‖.
Proof. Write g(x, z) =

∑
j gj(z)x

j . Fix j and apply Lemma 5.3 to such operators,
obtaining the result.

Remark 5.2. An identical statement holds for functions from R×Ha,s to Ha,s+d.
To obtain the proof just remark that the boundedness of a linear operator B = (Bkl)
(gj in the proof) as an operator from Ha,s to Ha,s+d is equivalent to the boundedness

of B̃ := (vkBklsl) as an operator from �2 to itself, where vk, sl are suitable weights.
With the above lemmas at hand it easy to estimate the vector field of χ. We treat

explicitly only χ1.
Lemma 5.5. Let χ1 be the component linear in ẑ and ẑ of the function χ defined

by (62). Then there exists a constant C such that its vector field is bounded by

‖Xχ1(z, z)‖a,s+d ≤ C‖z‖2
a,s.

Proof. Write χ1 as follows:

χ1(x, x, ẑ, ẑ) = 〈χ01(x, x); ẑ〉	2 +
〈
χ10(x, x); ẑ

〉
	2
.

Consider the first term. Separating the x, x, and ẑ components, its vector field is
given by (

i

〈
∂χ01

∂x
; ẑ

〉
	2
,−i

〈
∂χ01

∂x
; ẑ

〉
	2
,−iχ01(x, x)

)
.

Explicitly χ01 is given by

∑
|j1|+|j2|=2

l≥n+1

−Pj1j2el

i(ω · (j1 − j2) + Ωl)
xj1xj2el.
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It follows that each of the x (and x) components of the vector field has the structure
considered in Lemma 5.2, which therefore gives the estimate of such part of the
vector field. Concerning the ẑ component, Lemma 5.1 applies and gives the result.
The remaining components can be treated exactly in the same way.

The estimate of the vector fields of χ0 and χ2 are obtained in a similar way. In
order to apply Lemma 5.4 to the estimate of the vector field of χ2 one has just to
remark that from (A) and (NR) one has the estimate

|ω · k + Ωj − Ωl| ≥ C(1 + |j − l|).

Thus we have the following proposition.
Proposition 5.6. The vector field of the function χ defined by (62) fulfills the

inequality

‖Xχ(z, z)‖a,s+d ≤ C‖z‖2
a,s.

Then by standard existence and uniqueness theory one has that such vector fields
define a unique smooth time 1 flow in a neighborhood of the origin both in Pa,s and
in Pa,s+d. It follows that the transformation is well defined. Transforming the vector
field of H, one gets a vector field having the same smoothness properties of the original
one. Moreover the transformed Hamiltonian will have the form

H̃ := H ◦ Φ1 = H0 + Ĝ3 + P̃4 + P̃5 + · · · ,(68)

where P̃j is a homogeneous polynomial of degree j. In particular it turns out that

P̃4 = P4 +
{
χ, P 1

3

}
+

1

2
{χ, {χ,H0}} = P4 +

1

2

{
χ, P 1

3

}
+

{
χ, Ĝ3

}
since P3 = P 1

3 + Ĝ3 and, by the definition of χ, P 1
3 + {χ,H0} = 0.

Thus one can iterate the construction and eliminate the unwanted terms of degree
4. Define P̃ 1

4 (in analogy to P 1
3 ), setting P̃4 = P̃ 1

4 +Ĝ4(z), where Ĝ4(z) = O(‖ẑ‖3) and

P̃ 1
4 is composed of the first three terms of the Taylor expansion of P̃4 in the variables

ẑ only. Next we perform a new canonical transformation which is the time 1 flow of
another auxiliary Hamiltonian χ̃ of degree 4, such that P̃ 1

4 + {χ̃,H0} is a function of
the actions |zj |2 only. Remark that in this case a nonvanishing normalized part of
the Hamiltonian exists (in general) since ω · (j1 − j2) + Ω · (j3 − j4) = 0 ∀ j1 = j2,
j3 = j4, |j1|+ |j2|+ |j3|+ |j4| = 4. Since, by (NR), ω · (j1 − j2) + Ω · (j3 − j4) 
= 0 for
all the remaining |j1|+ |j2|+ |j3|+ |j4| = 4, |j3|+ |j4| ≤ 2, the normalized part G4 is
explicitly given by

G4 :=
∑

|j1|+|j3|=2,|j3|≤1

P̃ 1
j1j1j3j3 |x|

2j1 |ẑ|2j3 ,(69)

where P̃ 1
j1j2j3j4

are the coefficients of P̃ 1
4 and |x|2 := xx, |ẑ|2 := ẑẑ. G4 is the function

G introduced in (7). The regularity and estimates for the canonical transformation
generated by χ̃ are obtained as before.

Finally, using again (NR), one iterates the construction with an auxiliary Hamil-
tonian of degree 5, eliminating all the terms of order 5 and concluding the proof of
Proposition 2.1 (getting no further contributions to the function G which is of order
4).
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Remark 5.3. If the Hamiltonian contains only monomials of even degree then
the terms of order 3 and 5 are not present in the Hamiltonian. Thus by just one
symplectic change of coordinates it is possible to eliminate the nonnormalized terms
of order 4, and the remaining higher order terms are yet of order 6.

Proof of Proposition 4.2. The proof follows Lemma 4 of [15] (and Proposition
2.1).

The Hamiltonian function H contains only monomials of even degree, and the
4th order term of the nonlinearity is given explicitly by (54). Therefore, let us define
the auxiliary Hamiltonian χ of degree 4,

χ :=
∑

i1±i2±i3±i4=0,{i1,i2}�={i3,i4}

−aFi1i2i3i4

i(i21 − i22 + i23 − i24)
zi1zi2zi3zi4 .

By Lemma 5 of [15], if i1 ± i2 ± i3 ± i4 = 0 and the nonordered pair {i1, i2} 
= {i3, i4},
then i21 − i22 + i23 − i24 
= 0, and so χ is well defined.

The fourth order term of the transformed Hamiltonian via the time 1 flow map
generated by χ is given by

P4 + {χ,H0} =
∑

i1±i2±i3±i4=0

(
aFi1i2i3i4 − i(i21 − i22 + i23 − i24)χi1i2i3i4

)

=
∑

{i1,i2}={i3,i4}
aFi1i2i3i4zi1zi2zi3zi4

=
α

2

∑
i,j≥1

ρ2
i ρ

2
j (4 − δij)|zi|2|zj |2 := G

recalling (55) and since Fijij = aρ2
i ρ

2
j

∫ π

0
sin2(ix) sin2(jx)dx = (8a/π)ρ2

i ρ
2
j (2 + δij).

The estimates for the vector field generated by χ and the corresponding time 1
flow map can be carried out as in Proposition 2.1.

Finally, note that the remaining terms, which constitute the higher order term
K, are yet of order 6 or more (see Remark 5.3).
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